Technology

Supersonic tech delivers low-cost magnesium

CSIRO and Enirgi Group are working to make magnesium affordable as demand from car manufacturers increases

In a move that could help reinvigorate the metal production industry in Australia, CSIRO and Enirgi Group have joined forces to develop and commercialise an affordable and low-emission technology for producing magnesium metal.

The CSIRO-developed technology, known as MagSonic, produces magnesium using up to 80 percent less energy and up to 60 per cent less carbon dioxide emissions thanks to a supersonic nozzle.

Magnesium is the lightest of all metals and is in rising demand from car manufacturers who are turning to the metal as a solution for making lightweight, low-emission vehicles.

CSIRO and Enirgi Group’s Innovation Division will work together to further develop and validate the MagSonic technology.

Once the technology is proven ready for commercialisation, Enirgi Group has the option to take up an exclusive global license that would see the company initially build a commercial-scale magnesium production facility in Australia.

Dr Mark Cooksey, who leads CSIRO’s sustainable process engineering group, said commercialisation of MagSonic would help take advantage of Australia’s abundant reserves of magnesite ore that remain largely untapped.

“The growth of magnesium use has been limited because it’s been too expensive and labour-intensive to produce the metal from ore using traditional processes,” Dr Cooksey said.

“Our MagSonic technology offers an economically-viable solution to overcome these issues and make clean magnesium more available and affordable to manufacturers.

“We’re delighted to be working with Enirgi Group as our technology and commercial partners, with their experience in developing new processes to disrupt and change industry dynamics.”

MagSonic uses carbothermal reduction and a supersonic nozzle to efficiently produce high quality magnesium.

It involves heating magnesia with carbon to extreme temperatures to produce magnesium vapour and carbon monoxide.

The vapour and carbon monoxide are passed through a supersonic nozzle – similar to a rocket engine – at four times the speed of sound to cool the gases in milliseconds, condensing and solidifying the magnesium vapour to magnesium metal.

“We are pleased to be working with CSIRO on this exciting opportunity to bring reliable supply of magnesium metal to the global market in an environmentally sustainable way,” Enirgi Group’s Vice President of Corporate Development, Anthony Deal said.

“We are confident that this process is capable of commercial production.

“The flow-through benefits to emerging industries like electric vehicle manufacturing are enormous, not to mention a substantial reduction in carbon emissions when compared to current magnesium production processes,” he said.

In recent years, CSIRO has been developing new sustainable technologies to help the Australian metal production industry compete in an increasingly environmentally-conscious and globalised world.

MagSonic compliments a suite of CSIRO-developed magnesium technologies, including T-mag, twin roll strip casting and high pressure die casting.

See more stories from CSIRO

Most Popular

To Top